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Trace Anomaly of Nonlinear Electrodynamics ♦
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Nonlinear electromagnetism has several motivations, aris-
ing naturally from quantum electrodynamics (QED) and
introduced by Euler and Heisenberg (EH) [1] in the first
“effective” action. However, a more basic nonlinearity may
be present since Maxwell’s theory could be just the weak-
field limit of a more fundamental sub-QED theory, just as
Born-Infeld electrodynamics (BI) [2] is receiving today re-
newed attention as the physical limit of higher dimensional
brane theories. Necessary to any nonlinear theory electro-
magnetism is a scale which has dimension of an electrical
field, often expressed in terms of the electric field strength

eE0 ≡ (Mc2)2

~c . The energy momentum tensor thus acquires
a nonzero trace because the theory cannot be conformally
symmetric, conversely to the well-known direction of the
implication [3].

To see this, write the Lagrangian in terms of the Lorentz
scalar S = (B2−E2)/2 and pseudoscalar P = E ·B, but ex-
tracting the scale parameter, Veff ≡M4Veff

(

S
M4 ,

P
M4

)

. The
infinite mass limit must naturally reproduce Maxwell elec-

tromagnetism V
(Max)
eff = −S. Now the energy-momentum

tensor can be divided into a trace-less and a trace part,
the latter of which takes the form

Tµ
µ = 4

(

Veff − S
∂Veff

∂S
− P

∂Veff

∂P

)

= M
∂V eff

∂M
. (1)

The introduction of the bar signals the essentially non-
linear parts of Veff : terms linear in S are seen to cancel
explicitly in the preceding expression. This suggests the

decomposition Veff = V
(1)
eff + V eff , using V

(1)
eff to denote the

remaining terms linear in S.
BI is a classical nonlinear theory constructed to have a

limiting field strength, of which a nonvanishing Tµ
µ is an

immediate consequence. An easy calculation shows

Tµ
µ = 4M4(ε(1 + S/M41) − 1) (BI), (2)

where ε ≡ −(∂V
(BI)
eff /∂S) = [1+2S/M4− (P/M4)2]−1/2

is the polarization function. Eq. (2) is a smooth, analytic
function on its usual domain of definition, E,B < E0.
The explicit nonanalyticity at the critical field parallels the
divergence of thermodynamic potentials at a phase tran-
sition; however, in the absence of the more fundamental
theory displaying both phases, we restrain ourselves to us-
ing BI as a comparison to non-perturbative investigations
of gauge theories, for which a phase transition is univer-
sally expected.

In QED, the natural scale me of electron-positron fluc-
tuations induces violations of superposition and other
nonlinearities in light propagation even at one loop in
perturbation theory. Recalling the well-known relation
m(dVeff/dm) = −m〈ψ̄ψ〉 as well as the decomposition sug-
gested below Eq. (1), one finds (paralleling QCD)

Tµ
µ =

2α

3π
〈S〉 +m〈ψ̄ψ〉 (QED), (3)

writing the vacuum expectation of S due to the interpre-
tation of the linear term of the effective action to be the

externally applied field or photon condensate.
The derivative d/dm regularizes all but the zero-point

divergence of the Euler-Heisenberg effective action, so a
meromorphic expansion transforms the expressions for the
e+e− condensate and trace anomaly into integrals more
amenable to numerical evaluation. For example in electric-
only background

Tµ
µ =

m4

2π2β

∫ ∞

0

s2 ln(1 − e−βs)

1 − s2 − iǫ
ds (4)

and

−m〈ψ̄ψ〉 =
m4

2π2β

∫ ∞

0

ln(1 − e−βs)

1 − s2 − iǫ
ds (5)

in which the imaginary part generated by the pole per-
sists as the image of the instability of the vacuum to pair
production. These results are readily generalized to ar-
bitrary, constant background fields and to scalar electro-
dynamics [3]. The EH anomaly exhibits a striking edge
architecture (see figure), deserving further investigation.

Fig. 1: The trace anomaly of the EH action for general E,B fields,
parameterized by the Lorentz invariants, S,P. Although the figure
has a logarithmic scale, the anomaly crosses zero at the dark (pink)
line, going from positive to negative for S . −55. (Color online.)

The trace anomaly enters Einstein’s equations in the
manner of a cosmological constant, showing that where
present, it tends to push matter apart. Because a perfectly
field-free space is difficult to imagine, large-scale gravita-
tional consequences could be nontrivial despite the small
magnitude, and the effects of ‘clumpy’ dark energy are only
recently being investigated. Potential implications include
modifications to orbital dynamics and astrophysical col-
lapse dynamics.
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