Production of a New ⁷⁹Se Standard for AMS

I. Dillmann, G. Rugel, T. Faestermann, G. Korschinek, U. Giesen^{*a*}, and A. Heiske^{*a*} ^{*a*} Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany

The nucleosynthesis of elements heavier than iron can be almost completely ascribed to the *s* process ("slow neutron capture process") and the *r* process ("rapid neutron capture process"). The *s* process can be further divided into a "weak" component (responsible for nuclei up to $A\approx90$) and a "main" component (for 90 < A < 209), which occur in different astrophysical scenarios at different temperatures and with different neutron exposures. Among the nuclei involved, the long-lived radioactive isotopes ⁶³Ni (t_{1/2}= 100.1 yr), ⁷⁹Se (t_{1/2} \approx 295000 yr), and ⁸³Kr (t_{1/2}= 10.76 yr) assume key positions, because their β^- -decay rate becomes comparable to the neutron capture rate ($\lambda_{\beta} \approx \lambda_n$). The resulting competition leads to branchings in the *s*process nucleosynthesis path.

These branching isotopes can be used either to determine the neutron density or the temperature in the star during the *s* process. The strong temperature dependence of the β -decay rate of ⁷⁹Se [1] is due to thermal population of low-lying excited states and reduces the half-life from the terrestrial value of 295000 yr to only a few years at *s*-process temperatures of 5 MK. Due to this behavior ⁷⁹Se can be used as *s*-process thermometer and the increase in the abundance of the *s*-only isotope ⁸⁰Kr can be used to deduce the effective temperature. ⁶³Ni and ⁸⁵Kr do not show such a strong temperature dependence and are thus ideal neutron density monitors.

With the GAMS setup at the MLL, we have determined in the last years the stellar (n, γ) cross sections of ⁶²Ni and ⁷⁸Se at kT=25 keV (see Annual Report 2005, p. 27 and Annual Report 2007, p. 27). The detection of ⁷⁹Se is also of interest for nuclear technology because due to its long half-life it has been build up in burnt reactor fuel elements. Its still uncertain half-life (presently favored value: 295000 yr) makes a determination of the ⁷⁹Se amount via the activity very uncertain. AMS is one of the few possibilities for direct atom counting. But since the measurements are always carried out relative to a standard the production of these standards is a critical point.

The previously used ⁷⁹Se standard was produced with thermal neutrons and had an uncertainty of 6%, mainly due to the uncertainty in the thermal neutron capture cross section of 0.43 ± 0.02 b [2]. An alternative way to produce a ⁷⁹Se standard independent of the thermal cross section is the reaction chain ⁸²Se $(p, \alpha)^{79}$ As $(\beta^{-})^{79}$ Se. This activation was carried out at the cyclotron of the Physikalisch-Technische Bundesanstalt in Braunschweig/Germany. The sample consisted of Al powder mixed with ⁸²Se (enrichment 99.93%) in the stoichiometry of 8.5:1. Because no

References

- [1] K. Takahashi, K. Yokoi, At. Data Nucl. Data Tabl. 36 (1987) 375
- [2] S.F. Mughabghab, Atlas of Neutron Resonances- Resonance Parameters and Thermal Cross Sections Z= 1-100, 5th Edition, Elsevier (2006), ISBN 0444 52035X.
- [3] T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75 (2000) 1

experimental information existed so far, the sample was irradiated with protons of $E_{c.m.}=18.625$ MeV (see Fig. 1), close to the (theoretical) cross section maximum for the $^{82}\text{Se}(p,\alpha)^{79}\text{As}$ reaction in the Hauser-Feshbach code NON-SMOKER [3].

Fig. 1: Target cup setup at the PTB.

For determining the cross section, six short-time activations between 60 and 150 s have been carried out. The decay of the ⁷⁹As can then be followed with γ spectroscopy (see Fig. 2). The transitions at 365 keV, 432 keV, and 879 keV were used for analysis. However, there seem to be systematic deviations between the single transitions.

Fig. 2: Decay scheme of ⁷⁹As.

The preliminary results (including only the statistical errors) are 9.7±0.4 mb, 11.4±0.2 mb, and 10.8±0.3 mb for the 365 keV, 432 keV, and 879 keV transitions, respectively. The origin of these deviations might be due to the uncertainties in the γ intensities, which were deduced with 5% uncertainty more than 40 years ago. Taking the weighted average, we get a preliminary production cross section of 10.6 ± 0.7 mb, which translates with the total proton fluence of 1.2×10^{18} p into a production of 2.3×10^{12} atoms of ⁷⁹Se, and a $\frac{^{79}Se}{^{82}Se}$ ratio of 1.3×10^{-8} .