$^{100}\mathbf{Sn}$ and Nuclei in its Neighbourhood \diamond

K. Eppinger, C. Hinke, M. Böhmer, P. Boutachkov^a, T. Faestermann, H. Geissel^a, R. Gernhäuser, M. Górska^a, A. Gottardo^b, J. Grebosz^c, R. Krücken, N. Kurz^a, Z. Liu^b, L. Maier, S. Pietri^{a,d}, Zs. Podolyák^d, K. Steiger, H. Weick^a, P. J. Woods^b, N. Al-Dahan^d, N. Alkhomashi^d, A. Atac^e, A. Blazhev^f, N. Braun^f, L. Caceres^a, I. Celikovic^g, T. Davinson^b, I. Dillmann,
C. Domingo-Pardo^a, P. Doornenbal^h, G. de Franceⁱ, G. Farelli^d, F. Farinon^a, J. Gerl^a, N. Goel^a, T. Habermann^a, R. Hoischen^a, R. Janik^j, M. Karny^k, A. Kaskas^d, I. Kojouharov^a, Th. Kröll, M. Lewitowiczⁱ, Y. Litvinov^a, S. Myalski^c, F. Nebel, S. Nishimura^h, C. Nociforo^a, J. Nyberg^l

A. Parikh, A. Procházka^a, P. H. Regan^d, C. Rigollet^m, H. Schaffner^a, C. Scheidenberger^a,

S. Schwertel, P.-A. Söderström¹, S.J. Steer^d, A. Stolzⁿ, P. Strmen^j, H.J. Wollersheim^a, and

the RISING collaboration

^a GSI, Darmstadt ^b U of Edinburgh ^c IFJ PAN, Krakow ^d U of Surrey ^e U of Ankara ^f U zu Köln ^g Inst. Vinca, Belgrade ^h RIKEN, Wako ⁱ GANIL, Caen ^j U of Bratislava ^k U of Warsaw ^l U of Uppsala ^m KVI - U of Groningen ⁿ MSU, East Lansing

¹⁰⁰Sn is a unique case in the nuclear landscape, being doubly magic and the heaviest particle-stable N=Z nucleus. It had been produced and studied already in two FRS experiments [1,2] identifying together eight events. With the improved intensities from the SIS an experiment with good statistics became feasible. We have produced $^{100}\mathrm{Sn}$ and nuclei in its neighbourhood by fragmentation of a 1 $A \cdot GeV$ beam of ¹²⁴Xe on a Be target. Using rapid cycling of the SIS the average intensity on target was more than 10^9 ions/s. Redundant measurements of energy loss, magnetic rigidity, and flight time in the second half of the FRS allowed a unique identification of the fragments as shown in Fig. 1 for the 15 days of data taking in a 100 Sn setting of the FRS. In addition to 244 nuclei of ¹⁰⁰Sn we identified for the first time the nuclides ⁹⁵Cd, ⁹⁷In and most probably ⁹⁹Sn. Although we see some events at the location of $^{103}\mathrm{Sb},$ its half life must be at least a factor of 3 shorter than the flight time through the FRS of 200 ns, in contrast to the literature [3]. The fragments were stopped in a stack of Si detectors. For the correlation of implantation position and time with subsequent decays we used three large area position sensitive Si strip detectors with a total of 7200 pixels. 10 1mm thick Si detectors in front and behind this implantation zone served as calorimeters to measure the β -spectrum and to determine its endpoint.

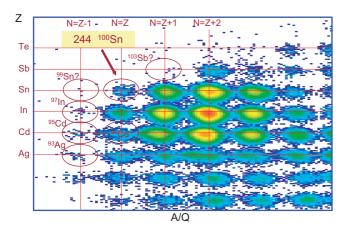


Fig. 1: Nuclides identified in the FRS during the 15 days irradiation in the setting for $^{100}{\rm Sn.}$

The implantation detector was surrounded by the 105 Ge detectors of the RISING array to observe isomeric decays as well as the γ -deexcitation following β -decays. A number of isomeric states was observed. As an example Fig. 2 shows a delayed γ -spectrum for ¹⁰²Sn, where we found a new isomeric transition. Analysis of the data for position-correlated γ -decays is in progress to extract half-life, β -endpoint energy and decay- γ information.

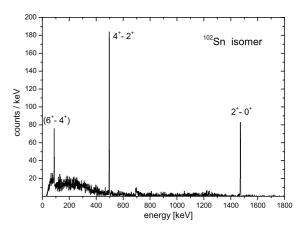


Fig. 2: Delayed γ -spectrum for ¹⁰²Sn events. The low energy transition was hitherto unknown and could be interpreted as the 6⁺ – 4⁺ transition.

References

- [1] R. Schneider *et al.*, Z. f. Phys. **A348** (1994) 241
- [2] T. Faestermann *et al.*, Europ. Phys. J. A15 (2002) 185
- [3] K. Rykaczewski et al., Phys. Rev. C52 (1995) R231

 \diamond work supported by the MLL, BMBF (06MT238), BMBF (06KY205I), DFG (EXC153), GSI(TM/KRUE), EPSRC, STFCUK, and EURONS